维护网络安全什么是最基本最基础的工作
维护网络安全, 感知网络安全态势是最基本最基础的工作。网络安全态势感知就是利用数据融合、 数据挖掘、智能分析和可视化等技术, 直观显示网络环境的实时安全状况, 为网络安全提供保障。
网络安全态势感知要在对网络资源进行要素采集的基础上,通过数据预处理、网络安全态势特征提取、态势评估、态势预测和态势展示等过程来完成,其中涉及的技术包括:
数据融合技术
数据融合技术是一个多级、多层面的数据处理过程,主要完成对来自网络中具有相似或不同特征模式的多源信息进行互补集成,完成对数据的自动监测、关联、相关、估计及组合等处理,从而得到更为准确、可靠的结论。数据融合按信息抽象程度可分为从低到高的三个层次:数据级融合、特征级融合和决策级融合,其中特征级融合和决策级融合在态势感知中具有较为广泛的应用。
数据挖掘技术
数据挖掘可分为描述性挖掘和预测性挖掘,描述性挖掘用于刻画数据库中数据的一般特性;预测性挖掘在当前数据上进行推断,并加以预测。数据挖掘方法主要有:关联分析法、序列模式分析法、分类分析法和聚类分析法。关联分析法用于挖掘数据之间的联系;序列模式分析法侧重于分析数据间的因果关系;分类分析法通过对预先定义好的类建立分析模型,对数据进行分类,常用的模型有决策树模型、贝叶斯分类模型、神经网络模型等;聚类分析不依赖预先定义好的类,它的划分是未知的,常用的方法有模糊聚类法、动态聚类法、基于密度的方法等。
特征提取技术
网络安全态势特征提取是网络安全态势评估和预测的基础,对整个态势评估和预测有着重要的影响,网络安全态势特征提取方法主要有层次分析法、模糊层次分析法、德尔菲法和综合分析法。
态势预测技术
网络安全态势预测就是根据网络运行状况发展变化的实际数据和历史资料,运用科学的理论、方法和各种经验、判断、知识去推测、估计、分析其在未来一定时期内可能的变化情况,是网络安全态势感知的一个重要组成部分。网络在不同时刻的安全态势彼此相关,安全态势的变化有一定的内部规律,这种规律可以预测网络在将来时刻的安全态势,从而可以有预见性地进行安全策略的配置,实现动态的网络安全管理,预防大规模网络安全事件的发生。网络安全态势预测方法主要有神经网络预测法、时间序列预测法、基于灰色理论预测法。
可视化技术
可视化技术是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。它涉及计算机图形学、图像处理、计算机视觉、计算机辅助设计等多个领域。